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Appendix A Theoretical Motivation

In what follows we lay out a simple structural framework which is meant to fix ideas and form a

suitable conceptual base for our paper’s empirical analysis. Understanding the drivers of CIP de-

viations is tantamount to understanding the workings of the FX swap market (see Du and Schreger

(2022) and references therein). Accordingly, the framework we use is a partial equilibrium of the

FX swap market that builds heavily on Liao and Zhang (2020). The model consists of two time

periods (t and t + 1) and two agents. The first agent is a risk-neutral arbitrageur who supplies

FX swaps. The second is a risk-averse local institutional investor (II) who demands FX swaps to

obtain FX-risk-free foreign currency funding. The use of this foreign currency funding is for the

local II to increase its (hedged) exposure to foreign assets.

We start our depiction of the model with a presentation of the supply side of the FX swap

market by presenting the arbitrageur’s supply of FX swaps. We then show demand for FX swaps

by the local II. We end the section by defining equilibrium and presenting the model’s main pre-

diction.

A.1 Supply of FX Swaps

General Setting. There is a risk-neutral arbitrageur that represents the supply side of the FX

swap market. The arbitrageur’s aim is to profit from the local II by creating a synthetic forward

rate that is cheaper than the market’s observed forward rate. The arbitrageur’s trade can be broken

down into two parts. First, it buys spot Qt,ARBSt local currency units and sells spot Qt,ARB foreign

currency units in period t, conducting this trade entirely with the local II. Second, it sells forward

Qt,ARBSt(1+ it+1,L) local currency units at forward rate Ft,t+1, where Qt,ARBSt is the local currency

amount sold forward to the local II in the second leg of the associated arbitrageur-local II FX swap

trade and Qt,ARBStit+1,L represents the interest related amount sold forward in an outright forward

trade the arbitrageur conducts with some (unmodeled) broker-dealer institution.

The rationale for the second part of the trade can be explained as follows. Using its pre-

determined arbitrage capital, the arbitrageur conducts CIP arbitrage as well as other arbitrage

trades (whose depiction is deferred for now). Given its role as arbitrageur, and since FX swaps
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trades do not perfectly align with CIP arbitrage as they exclude the interest proceeds element,1

the arbitrageur additionally sells forward Qt,ARBStit+1,L local currency units, where Qt,ARB is the

arbitrageur’s FX swap supply (in foreign currency units) and it+1,L is the local risk-free interest

rates, respectively. (While left unmodeled, the counterparty to this interest proceeds forward trade

can be thought of as a broker-dealer institution.)

The arbitrageur’s level of predetermined arbitrage capital will be used below as the model’s

LOA measure in the sense that a lower such capital level implies greater LOA. While this LOA

representation constitutes a reduced-form encapsulation of LOA, we view it as the most natural

way to represent LOA in our structural setting.

We assume that the arbitrageur can borrow foreign currency frictionlessly in the cash market

at interest rate it+1,W and hence has no constraints on its funding of foreign currency. (I.e., it+1,W

represents the opportunity cost of arbitrageur’s FX swap trade. In our setting it is viewed as the

effective cost of the FX swap trade as we assume the arbitrageur funds this trade by borrowing

the required funds in the cash market.) However, we assume that it faces frictions in the FX swap

market, as we now turn to explain.

Haircut. Following Ivashina et al. (2015), we assume that a haircut (initial margin) is applied

to the arbitrageur’s FX swap trade in the amount of κQt,ARB. That is, the arbitrageur’s FX swap

trade requires it to incur a linear haircut-induced cost through the depositing of share κ of its swap

position to the local II.2

Arbitrageur’s Alternative Arbitrage Activity. By allocating κQt,ARB for CIP arbitrage, the

arbitrageur has to take these funds away from its pre-determined arbitrage capital At. In other

words, At − κQt,ARB represents the arbitrageur’s available capital for another (non-CIP) arbitrage

activity (e.g., fixed income arbitrage). Following Ivashina et al. (2015), this other arbitrage activity

has a net concave return given by G(At − κQt,ARB), where G(:) > 0, G′(:) > 0, G′′(:) < 0, and

1While this element is necessary for conducting CIP arbitrage, it is noteworthy that it is also very small
(relative to the principal) given that FX swap trades’ maturities are usually short (Schrimpf and Sushko
(2019)).

2For simplicity, we abstract from the opposing haircut facing the local II.
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G′′′(:) > 0. 3

These assumptions on G(:) are met by standard production/revenue functions, including the

logarithmic specification used in Ivashina et al. (2015). More generally, considering the commonly

used positively homogenous production/revenue functions, it is straightforward to show that

concavity (G′′(:) < 0) in fact implies a positive third derivative (G′′′(:) > 0) as the latter condition

requires a returns to scale that is lower than 2 while the former implies a returns to scale that is

lower than 1 (i.e., decreasing returns to scale). This is an important observation because evidence

from the literature on bank investment returns (see Zhu (2008) and references therein) and the

literature on mutual fund investment returns (McLemore (2019)) supports the notion of decreasing

return to scale for financial institutions’ investments.

Arbitrageur’s Profit Maximization. We are now in position to write the arbitrageur’s profit

from its arbitrage activity as

Qt,ARB
St

Ft,t+1
(1 + it+1,L)−Qt,ARB(1 + it+1,W) + G(At − κQt,ARB). (A.1)

The FOC that results from maximizing the profit from Equation (A.1) with respect to Qt,ARB is

bt ≡ 1 + it+1,W −
St

Ft,t+1
(1 + it+1,L) = −κG′(At − κQt,ARB), (A.2)

where bt is the cross-currency basis (defined in accordance with the literature) and St
Ft,t+1

(1+ it+1,L)

represents the synthetic, CIP-implied foreign (gross) risk-free interest rate which is clearly higher

than the cash market one owing to the haircut-induced cost. In other words, Equation (A.2) im-

plies a negative cross-currency basis bt that is caused by the swap trade’s haircut-induced friction.

Relation between Qt,ARB and −bt. Minus of the cross-currency basis (i.e., −bt) from FOC

(A.2) is the arbitrageur’s marginal profit from increasing its FX swap position. As such, the minus

3The concavity of G is consistent with the limits-to-arbitrage notion from Shleifer and Vishny (1997). For
internal consistency between such arbitrage limits existing across all of the arbitrageur’s arbitrage activities,
we could also have assumed a convex haircut-induced cost as in Liao and Zhang (2020) which seems more
consistent with such limits than our linear haircut assumption. Such modeling choice does not change our
model’s main prediction and hence, for simplicity, we stick to the linear haircut modeling approach from
Ivashina et al. (2015).
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of the cross-currency basis can also be economically viewed as the price of the FX swap. Accord-

ingly, it is therefore reasonable to expect that the arbitrageur’s supply of FX swaps increases in

−bt. To show this formally, we differentiate −bt from FOC (A.2) with respect to Qt,ARB:

∂(−bt)

∂Qt,ARB
= −κ2G′′(At − κQt,ARB) > 0, (A.3)

where the positive sign of Equation (A.3) comes from the assumed concavity of net return function

G(At − κQt,ARB). Given the interpretation of −bt as FX swap price, Equation (A.3) delivers the

standard result of an upward-sloping supply curve: higher price (marginal profit) of FX swaps

induces the arbitrageur to supply more such swaps. Moreover, we can show that the slope of

the arbitrageur’s FX swap supply curve flattens (steepens) when initial arbitrage capital is higher

(lower) by differentiating Equation (A.3) with respect to At:

∂2(−bt)

∂Qt,ARB∂At
= −κ2G′′′(At − κQt,ARB) < 0. (A.4)

This result clearly follows from the arguably weak assumption of G(:)’s positive third derivative

(see related discussion on this assumption on Page 3). I.e., more (less) initial arbitrage capital

induces less (more) rigidity in the willingness of the arbitrageur to supply FX swaps. Result (A.4)

lies at the heart of our paper.

A.2 Demand for FX Swaps

General Setting. We assume a risk-averse local II that borrows in the swap market Qt,I I foreign

currency units for the purchase of foreign assets whose expected rate of return is denoted by

Etit+1,FA, where Et is the expectation operator conditional on period t information. (The it+1,FA

return variable can be thought of as some weighted average of returns of foreign stocks, bonds,

and loans.) Specifically, the local II enters an FX swap with the arbitrageur of size Qt,I I . In the first

leg of the trade the local II sells Qt,I ISt local currency spot units and buys Qt,I I foreign currency

units. And in the second leg, which takes place in period t + 1, the local II buys Qt,I ISt local

currency units at forward rate Ft,t+1 and sells Qt,I I St
Ft,t+1

foreign currency units. We abstract from the

haircut that the local II realistically faces in this swap trade as well as from its non-swap-related

investments. Adding these elements would complicate the exposition without affecting the main

prediction of our model.
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Expectation and Variance of Local II’s Profit. We can write the local II’s next period’s ex-

pected profit (in foreign currency terms) from its swap-related foreign investment, which we as-

sume to be positive and denote by EtΠt+1,I I , as

EtΠt+1,I I = Qt,I I(1 + Etit+1,FA)−Qt,I I
St

Ft,t+1
. (A.5)

We can use the definition of cross-currency basis from Equation (A.2) to write Equation (A.5)

equivalently as

EtΠt+1,I I = Qt,I I(1 + Etit+1,FA)−Qt,I I

(
1 + it+1,W − bt

1 + it+1,L

)
. (A.6)

And the variance of local II’s profit (VtΠt+1,I I) can be written as VtΠt+1,I I = Q2
t,I IVt(it+1,FA),

where Vt is the variance operator conditional on period t information.

Mean-Variance Optimization Problem. We assume the local II chooses its demand for FX

swaps Qt,I I so as to maximize

EtΠt+1,I I −
eεt

2
VtΠt+1,I I = Qt,I I(1 + Etit+1,FA)−Qt,I I

(
1 + it+1,W − bt

1 + it+1,L

)
− (A.7)

eεt

2
Q2

t,I IVt(it+1,FA),

where εt represents an FX swap demand white noise shock which in turn determines the level of

local II’s risk aversion with respect to swap-related foreign investment. Importantly, as formally

shown below, a positive (negative) εt induces a leftward (rightward) shift in the demand for FX

swaps. More generally, when one considers the alternative local investment opportunities fac-

ing the local II, such shocks essentially represent exogenous shifts in the local II’s geographical

investment preferences.

The FOC that results from maximizing the objective function from Equation (A.7) with respect

to Qt,I I is

Qt,I I =
1 + Etit+1,FA

eεt Vt(it+1,FA)
− 1 + it+1,W − bt

(1 + it+1,L)eεt Vt(it+1,FA)
. (A.8)

Equation (A.8) essentially represents local II’s demand for FX swaps.
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Relation between Qt,I I and−bt. In the previous section we interpreted−bt as the price of FX

swaps. As such, we should expect to have a negative relation between this price and demand for

FX swaps. To show this negative relation (i.e., a downward sloping FX swap demand curve), let

us differentiate Equation (A.8) with respect to −bt:

∂Qt,I I

∂(−bt)
= − 1

(1 + it+1,L)eεt Vt(it+1,FA)
< 0. (A.9)

Relation between Qt,I I and εt. We argued above that a positive (negative) realization for εt

represents a leftward (rightward) shift in local II’s FX swap demand. To show this formally, let us

differentiate Equation (A.8) with respect to eεt :

∂Qt,I I

∂eεt
= − 1 + Etit+1,FA

e2εt [Vt(it+1,FA)]2
+

1 + it+1,W − bt

e2εt [Vt(it+1,FA)]2(1 + it+1,L)
< 0, (A.10)

where the negative sign of Equation (A.10) comes from the fact that local II’s expected profit,

1 + Etit+1,FA −
(

1+it+1,W−bt
1+it+1,L

)
, is assumed to be positive.

A.3 Model Equilibrium

We define equilibrium in the FX swap market as the equality Qt,I I = Qt,ARB = Qt, where Qt

denotes the equilibrium level of FX swap flows. The latter equilibrium equation, when substituted

into FOCs (A.2) and (A.8) produce two equations in two unknowns bt and Qt. (A proof that relies

on a fixed-point argument for the existence and uniqueness of a solution to this demand-supply

equation system is available upon request from the authors.) We can use our previous results on

the nature of the FX swap supply and demand curves to deduce the main prediction of our model.

The At-Dependent Relation Between εt and bt. Consider our model’s FX demand-supply

framework in the space of−bt and Qt. Equation (A.2) defines an upward-sloping FX swap supply

curve whose slope becomes steeper with a lower At. Equation (A.8) defines a downward-sloping

FX swap demand curve which shifts rightward in response to a negative realization of swap de-

mand shock εt. In equilibrium, such favorable swap demand shock is predicted to produce an
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increase in −bt (i.e., a widening of the basis) which depends on the level of the arbitrageur’s ini-

tial arbitrage capital At: the lower (higher) this capital is, the stronger (weaker) the widening effect

of the demand shock.

To see this relation formally, we take three steps. First, we substitute Equation (A.8) into Equa-

tion (A.2) (after substituting into both equations the equilibrium condition Qt,I I = Qt,ARB = Qt)

to obtain the following equilibrium equation for bt:

bt = −κG′
(

At − κ

(
1 + Etit+1,FA

eεt Vt(it+1,FA)
− 1 + it+1,W − bt

(1 + it+1,L)eεt Vt(it+1,FA)

))
. (A.11)

Second, we implicitly differentiate Equation (A.11) with respect to eεt to obtain the effect of the

latter on bt:4

∂bt

∂eεt
=

κ2G′′(:) ∂Qt,I I
∂eεt

1− κG′′(:) ∂Qt,I I
∂bt

> 0. (A.12)

The positive sign of Equation (A.12) relies on the assumed concavity of G and the derived negative

signs of ∂Qt,I I
∂(−bt)

and ∂Qt,I I
∂eεt from Equations (A.9) and (A.10), respectively. Third, we differentiate

Equation (A.12) with respect to At:

∂2bt

∂eεt ∂At
=

κ2G′′′(:) ∂Qt,I I
∂eεt (1− κG′′(:) ∂Qt,I I

∂bt
) + κ2G′′(:) ∂Qt,I I

∂eεt G′′′(:) ∂Qt,I I
∂bt(

1− κG′′(:) ∂Qt,I I
∂bt

)2 = (A.13)

κ2G′′′(:) ∂2bt
∂eεt

(
1− G′′(:) ∂Qt,I I

∂bt
(κ2 − κ)

)
(

1− κG′′(:) ∂Qt,I I
∂bt

)2 < 0.

The negative sign of Equation (A.13) relies on the assumed concavity of G, its assumed posi-

tive third derivative, the fact that κ < 1, and the derived negative signs of ∂Qt,I I
∂(−bt)

and ∂Qt,I I
∂eεt from

Equations (A.9) and (A.10), respectively. Equations (A.12) and (A.13) formally demonstrate that

a negative realization for εt (i.e., a rightward shift in FX swap demand) is predicted to generate a

stronger widening of the basis (i.e., a larger decline in bt) if the initial value of At is lower (i.e., if

LOA are greater).

4To streamline the remaining two derivations’ exposition, which is otherwise quite cumbersome, we
avoid writing out the argument in G as well as the explicit expressions from ∂Qt,I I

∂(−bt )
and ∂Qt,I I

∂eεt from Equations
(A.9) and (A.10). The signs of these expressions are sufficient for our purposes in these two derivations.

7



This prediction has strong economic intuition given that lower At, by limiting the availability

of funds for arbitrageurs’ arbitrage activity and thus inducing greater LOA, should make their FX

swap supply more rigid and hence make the basis (bt) more responsive to a rightward shift in FX

swap demand. The At-dependent FX swap demand channel embodied by Equation (A.13) can

also be equivalently referred to as the LOA-dependent FX swap demand channel (as done in the

previous sections as well as hereafter), which is the central object of study of the paper.

Appendix B Local Projection Extension

While our paper focused on the impact LOA-dependent effect of demand shocks - a natural choice

given this object’s obvious centrality in our analysis -, it seems worthwhile to also explore the

dynamic nature of the LOA-dependent channel of FX swap demand as this would inform us about

the magnitude of this channel’s persistence. Toward this end, and having established our GIV-

with-controls approach as our preferred method for estimation of the LOA-dependent channel

of FX swap demand, we present here a dynamic extension of the latter approach which allows

for estimation of impulse responses and forecast error variance (FEV) contributions for our GIV

shock.

We implement this extension by jointly estimating a local projection regression counterpart to

Equation (8) from the text with Equations (4), (5), and (6) in a way that accounts for estimation

uncertainty surrounding all of these equations. As such, in addition to informing us about the

dynamic nature of the LOA-dependent channel of FX swap demand studied in this paper, this ex-

tension also serves to alleviate the concern that our impact-based results are sensitive to abstract-

ing from estimation uncertainty surrounding the extraction of the GIV shock. We use a Bayesian

estimation and inference procedure as it provides a convenient numerical way to produce confi-

dence intervals that account for estimation uncertainty in each of the equations underlying our

GIV estimation procedure.5

5The Bayesian approach we take is in the spirit of a long tradition in the literature on impulse response
estimation (see, e.g., Del Negro and Schorfheide (2011)) that has recently also caught on in the local projec-
tions literature (see, e.g, Miranda-Agrippino and Ricco (2021) and Ben Zeev (2023)).
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B.1 Econometric Model

The model we estimate is

∆SPi,t = C′γi,L + LOAt−1C′γi,I + vi,t, (B.1)

v̂i,t = εi,t + ζiLOAt−1εi,t + ηi,t, (B.2)

εi,t = µi,t, (B.3)

bt+h−1 − bt−1 = αh + ΞL,h$GIV,t + ΞI,hLOAt−1$GIV,t + βhLOAt−1 + ut+h−1, (B.4)

where Equations (B.1)-(B.3) are identical to Equations (4)-(6) from the text and Equation (B.4) is

the local projection regression counterpart to Equation (4) from the text with h = 1, 2, ..., 10 de-

noting the rolling horizon and Equation (B.4) for h = 1 (i.e., the impact horizon) being identical

to Equation (4) from the text. (We consider 10 trading days). Accounting for non-trading days

in the USD/NIS FX swap market, these 10 trading days correspond to roughly 20 calendar days.

Following Gabaix and Koijen (2023), we define the GIV shock (denoted by $GIV,t) as the difference

between the size-weighted- and equal-weighted-average of the estimated idiosyncratic shocks,

i.e., $GIV,t = ∑13
i=1 ε̂i,twi −∑13

i=1 ε̂i,t
1
13 , where wi is II i’s share of swap flows’ average volume in the

sum of IIs’ average volumes. The impulse responses in the LOA and no LOA states are ΞL,h + 2ΞI,h

and ΞL,h− 1.4ΞI,h, respectively, providing us in turn estimates of the LOA-dependent effects of the

GIV shock over roughly 20 calendar days.

B.2 Posterior Distribution of Parameters

We estimate Equations (B.1)-(B.4) jointly by applying the Bayesian estimation algorithm for strong

block-recursive structure put forward by Zha (1999) for block-recursive VARs, where the likeli-

hood function is broken into the different recursive blocks. In our case, we only have three blocks,

where the first consists of Equation (B.1), the second consists of Equations B.2 and (B.3), and the

third contains Equation (B.4). As shown in Zha (1999), this kind of block separation along with

the standard assumption of a normal-inverse Wishart conjugate prior structure leads to a normal-

inverse Wishart posterior distribution for the block-recursive equation parameters.

To account for temporal correlations of the error term in Equation (B.4), we apply a Newey-

West correction to the standard errors within our Bayesian estimation procedure. In doing so
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we accord with the reasoning from Miranda-Agrippino and Ricco (2021), who estimate a hybrid

VAR-local-projections model and follow the suggestion from Müller (2013) to increase estimation

precision in the presence of a misspecified likelihood function (as in our and their setting) by re-

placing the original posterior’s covariance matrix with an appropriately modified one. Moreover,

given the high-frequency nature of our data and the general tendency of impulse responses from

local projections to exhibit jaggedness, we apply a suitably modified version of the smoothing

procedure from Plagborg-Møller (2016) to our estimated raw impulse responses.

Given the block-recursiveness of the econometric model (Equations (B.1)-(B.4)), we present the

estimation algorithm separately for the three blocks underlying these equations.

B.3 Equation (B.1)

Companion Form of Specification. Keeping with the notation from Section 5.2.1 of the paper,

Equation (B.1) can be written in companion form as follows:

Yi = XiBi + vi, (B.5)

where i indexes IIs and Yi = [∆SPi,1, ..., ∆SPi,T]
′, Xi = [Xi,1, ..., Xi,T]

′ where Xi,t is a vector con-

taining the RHS variables of Equation (B.1) and Bi is a vector that includes Xi,t’s corresponding

coefficients; vi = [vi,1, ..., vi,T]
′ (with T being the time dimension of the sample and pi being the

number of lags); and σ2
i,v is the variance of the reduced form innovation series vi,t from that equa-

tion.

Specification of Uninformative Prior. We follow the conventional approach of specifying a

normal-inverse Wishart prior distribution for the reduced-form parameters:6

vec(Bi) | σ2
i,v ∼ N(vec(B̄0), σ2

i,v ⊗ N−1
0 ), (B.6)

σ2
i,ε ∼ IW1(m0S0, m0), (B.7)

where N0 is a KxK positive definite matrix (K is the number of parameters for the RHS of Equation

(B.1)), S0 is a scalar, and mo > 0. As shown by Uhlig (1994), the latter prior implies the following

6Since Equation (B.1) is univariate, the assumed inverse-Wishart distribution for σ2
i,v is denoted by IW1,

where the subscript 1 represents the univariate nature of Equation (B.1) and its corresponding univariate
inverse-Wishart distribution.
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posterior distribution:

vec(Bi) | σ2
i,v ∼ N(vec(B̄i,T), σ2

i,v ⊗ N−1
i,T ), (B.8)

σ2
i,v ∼ IW1(mTSi,T, mT), (B.9)

where mT = T + m0, Ni,T = N0 + X′i Xi, B̄i,T = N−1
i,T (N0B̄0 + X′i Xi B̂i),

Si,T = m0
mT

S0 +
T

mT
ˆσ2
i,v +

1
mT

(B̂I − B̄0)′N0N−1
i,T X′i Xi(B̂i − B̄0), B̂i = (X′i Xi)

−1X′iYi,

and ˆσ2
i,v = (Yi − Xi B̂i)

′(Yi − Xi B̂i)/T.

We follow the literature and use a weak prior, i.e., m0 = 0, N0 = 0, and arbitrary S0 and B̄0.

This implies that the prior distribution is proportional to σ2
i,v and that mT = T, Si,T = ˆσ2

i,v, B̄i,T =

B̂i, and Ni,T = X′i Xi.

Posterior Simulator. In light of the above-described prior formulation, the posterior simulator

for Bi and σ2
i,v can be described as follows:

1. Draw σ2
i,v from an IW1(T ˆσ2

i,v, T) distribution.

2. Draw Bi from the conditional distribution MN(B̂i, σ2
i,v ⊗ (X′i Xi)

−1).

3. Repeat steps 1 and 2 a large number of times and collect the drawn Bi’s and σ2
i,v’s.7

Once we have these draws at hand, we turn to estimate the second block of equations (Equa-

tions B.2 and (B.3)), which we now describe.

B.4 Equations (B.2) and (B.3)

Denoting the estimated residual of Equation (B.1) by v̂i,t, we formulate the relation between v̂i,t

and the sought-after true idiosyncratic demand shock εi,t as a time-varying state-space model:

v̂i,t = εi,t + ζiLOAt−1εi,t + ηi,t, (B.10)

εi,t = µi,t, (B.11)

where Equation (B.10) is the model’s measurement equation and Equation (B.11) is the model’s

state equation; ηi,t is a zero-mean independently and identically normally distributed variable

7We generate 1000 such posterior draws.
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with variance σi,η ; and µi,t is a zero-mean independently and identically normally distributed

variable with variance σi,ε which represents the DGP for the unobserved εi,t. The time-varying

dimension of this state-space model expresses itself through the time-varying nature of ζiLOAt−1

which can be viewed as a time-varying coefficient on εi,t.

We estimate state-space Model (B.10)-(B.11) by applying the Kalman filter to this model to

find the values for ζi, σi,η , and σi,µ that maximize the likelihood function for εi ≡ {εi,2, ..., εi,T}

(P(εi | ζi, σi,η , σi,µ, LOAi, v̂i) where LOAi ≡ {LOAi,1, ..., LOAi,T−1} and v̂i ≡ {v̂i,2, ..., v̂i,T}). Our

interest lies in the MSE-optimal smoothed εi,t estimate, which we denote by ε̂i,t, obtained from

applying this Kalman filter estimation procedure. We now turn to how this estimation is done in

our Bayesian setting.

Treatment of Hyperparamters ζi, σi,η, and σi,µ. To simulate posterior draws of εi, we need

to simulate posterior draws from the joint posterior probability distribution of εi, ζi, σi,η , and σi,µ,

P(εi, ζi, σi,η , σi,µ | LOAi, v̂i), and then use the Kalman filter smoother to obtain posterior draws

of εi. Bayes’ law dictates that P(εi, ζi, σi,η , σi,µ | LOAi, v̂i) = P(ζi, σi,η , σi,µ | εi, LOAi, v̂i)P(εi |

LOAi, v̂i) and that P(ζi, σi,η , σi,µ | εi, LOAi, v̂i) ∝ P(εi | ζi, σi,η , σi,µ, LOAi, v̂i)P(ζi, σi,η , σi,µ | LOAi, v̂i).

Since we have knowledge of P(εi | LOAi, v̂i) from the previous section’s estimation, all we

need in order simulate posterior draws from P(εi, ζi, σi,η , σi,µ | LOAi, v̂i) is to know P(ζi, σi,η , σi,µ |

εi, LOAi, v̂i). Following the approach of Giannone et al. (2015) and Miranda-Agrippino and Ricco

(2021), we treat ζi, σi,η , and σi,µ as additional model parameters for which we specify a trivariate

uniform prior probability distribution and estimate them via the Kalman filter as the maximizers

of the posterior likelihood P(ζi, σi,η , σi,µ | εi, LOAi, v̂i), in the spirit of hierarchical modeling. Our

assumed flat prior for the joint prior distribution of ζi, σi,η , and σi,µ (conditional on εi,LOAi, and v̂i),

P(ζi, σi,η , σi,µ | εi, LOAi, v̂i), implies equivalency between maximizing P(εi | ζi, σi,η , σi,µ, LOAi, v̂i)

and P(ζi, σi,η , σi,µ | εi, LOAi, v̂i) (with respect to ζi, σi,η , and σi,µ).

Estimation of P(εi | LOAi, v̂i). We are now in position to describe the estimation of the pos-

terior distribution of the smoothed idiosyncratic demand shocks εi. As noted on Page 16, this

posterior distribution can be obtained from P(εi, ζi, σi,η , σi,µ | LOAi, v̂i) by using the Kalman filter
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smoother to produce εi from the posterior draws of v̂i, ζi, σi,η , and σi,µ.

In particular, for each posterior draw of Bi, we compute v̂i from Equation (B.5) and perform an

unconstrained Kalman filter estimation of Model (B.10)-(B.11) which provides us with estimates

of ζi, σi,η , and σi,µ that we denote by ζi,MLE, σi,η,MLE, and σi,µ,MLE, respectively. This Kalman filter

estimation provides us with MLE estimates of ζi, σi,η , and σi,µ which we then feed into the Kalman

filter smoother to produce an estimated series of εi,ts (denoted by ε̂i,ts) which are then used to

construct the posterior distribution of GIV shocks as $GIV,t = ∑13
i=1 ε̂i,twi −∑13

i=1 ε̂i,t
1

13 (normalized

to have unit standard deviation), where wi is II i’s share of swap flows’ average volume in the sum

of IIs’ average volumes. We now turn to the estimation of the LOA-dependent effects of this GIV

shock from Equation inserted into the estimation of Equation (B.4).

Posterior Simulator. In light of the above-described prior formulation and associated estima-

tion procedure, the posterior simulator for $GIV,t can be described as follows:

1. Do Steps 1-3 from the posterior simulator of Equation (B.1) and obtain Bi and the resulting

residual v̂t.

2. Perform an unconstrained Kalman filter estimation of Model (B.10)-(B.11) and obtain the

Kalman-filter-smoothed estimate ε̂i,t.

3. Construct the GIV shock as $GIV,t = ∑13
i=1 ε̂i,twi −∑13

i=1 ε̂i,t
1
13 .

4. Repeat steps 1-3 a large number of times and collect the drawn $GIV,ts.8

B.5 Equation (B.4)

Companion Form of Specification. Let the set of the parameters (coefficient vector and resid-

ual standard deviation) to be estimated from Equation (B.4) be given by Qh and σu,h. Equation (B.4)

8We generate 1000 such posterior draws.
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can then be written in companion form as follows:9

Yh = XhQh + ζh, (B.12)

where h is the regression’s rolling horizon with h = 1, ..., 10; Yh = [bh−1 − b−1, bh − b0, ..., bT −

bT−h]
′; Xh = [X1, ..., XT−h+1]

′, with Xt = [1, ..., LOAt−1]
′; Qh = [αh, ..., βh]

′; and ζh = [uh, ..., uT]
′. Qh

here represents the coefficient vector of Equation (B.4) and σ2
u,h is the variance of ut+h (the residual

from this equation).

Specification of Uninformative Prior. We assume the following normal-inverse Wishart prior

distribution for these parameters:

vec(Qh) | σ2
u,h ∼ N(vec(Q̄0,h), σ2

u,h × N−1
0 ), (B.13)

σ2
u,h ∼ IW1(m0S0,h, m0), (B.14)

where N0 is a 4 x 4 positive definite matrix (4 being the number of coefficients in Equation (B.4));

S0 is a variance scalar; and mo > 0. As shown by Uhlig (1994), the latter prior implies the following

posterior distribution:

vec(Qh) | σ2
u,h ∼ N(vec(Q̄h), σ2

u,h × N−1
h ), (B.15)

σ2
u,h ∼ IW1(mhSh, mh), (B.16)

where mh = T − h + 1 + m0; Nh = N0 + X′hXh; Q̄h = N−1
h (N0Q̄0,h + X′hXhQ̂h); Sh = m0

mh
S0,h +

T−h+1
mh

σ̂2
u,h +

1
mh
(Q̂h − Q̄0,h)

′N0N−1
h X′hXh(Q̂h − Q̄0,h), where Q̂h = (X′hXh)

−1 (Xh)
′ Y and σ̂2

u,h =

(Yh − XhQ̂h)
′(Yh − XhQ̂h)/(T − h + 1).

We use a weak prior, i.e., m0 = 0, N0 = 0, and arbitrary S0,h and Q̄0,h. This implies that the

prior distribution is proportional to σ2
u,h and that mh = I × (T − h + 1), Sh = σ̂2

u,h, Q̄h = Q̂h,

and Nh = X′hXh. Due to the temporal correlations of the error term ut+h, the likelihood function

is misspecified which in turn requires that the residual variance estimate σ̂2
u,h be appropriately

9While there is, technically speaking, notational abuse of capital letters Y and X in Equations (B.5) and
(B.12), what matters is that they are of course defined and used in the context of their corresponding equa-
tions and hence their specific contexts avoid expositional confusion. (The context for the first equation is a
single equation while for the second it is a rolling regression context (hence the use of subscript h for Y and
X in the second equation).)

14



modified so as to improve estimation precision (Müller (2013)). Toward this end, we apply a

Newey-West correction to σ̂2
u,h which accounts for arbitrary temporal correlation of the error term

and denote the corrected variance estimate by σ̂2
u,h,hac.

Posterior Simulator. Given the above-described prior formulation and the correction to σ̂2
u,h,

we are now in position to lay out the posterior simulator for Qh and σ2
u,h, which accounts for

uncertainty in the estimation of all of the model’s equations and can be described as follows:

1. Do Steps 1-3 and 1-4 from the posterior simulators of Equations (B.1) and (B.10)-(B.11), re-

spectively, and obtain $GIV,t (whose standardized value is to be used as explanatory vari-

ables for the next two steps).

2. Draw σ2
u,h from an IW1((T − h + 1)σ̂2

u,h,hac, (T − h + 1)) distribution.

3. Draw Qh from the conditional distribution MN(Q̂h, σ2
u,h × (X′hXh)

−1).

4. Repeat Steps 1-3 a large number of times and collect the drawn Qh’s and σ2
u,h’s.10

B.6 Smoothing of Impulse Responses

The high-frequency nature of our data combined with using a local projection estimation approach

produce rather jagged raw impulse responses. It is therefore important and warranted to smooth

the raw impulse responses with a data-dependent smoothing procedure that suitably integrates

into our Bayesian framework. We now turn to present this procedure.

General Setting and Objective. Let ΘL = [ΞL,1, ΞL,2, ..., ΞL,10]
′ and ΘI = [ΞI,1, ΞI,2, ..., ΞI,10]

′

denote the raw linear and non-linear (interaction term based) impulse response 10× 1 vectors,

respectively. The posterior simulator of Steps 1-4 shows how to obtain posterior draws for these

vectors and hence effectively gives knowledge of its posterior probability distribution P(Θj | data)

(j = [L, I]). We assume the following smooth trend, state-space model for Ξj,h (with h representing

10The number of posterior draws is 1000, as this posterior simulator generates a posterior draw for each
of the 1000 drawn GIV shocks.
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the horizon and j = [L, I]):

Ξj,h = Ξ̃j,h + τj,h, (B.17)

Ξ̃j,h = 2Ξ̃j,h−1 − Ξ̃j,h−2 + γj,h, (B.18)

where Equation (B.17) is the model’s measurement equation and Equation (B.18) is the model’s

state equation; Ξ̃j,h is the smoothed impulse response at horizon h whose first-difference follows a

random walk with shock γj,h, which is a zero-mean independently and identically normally dis-

tributed variable with variance σγ; and τj,h is a zero-mean independently and identically normally

distributed variable with variance στ which represents the noise embodied in the raw impulse

response function (IRF). Letting Θ̃j = [Ξ̃j,1, Ξ̃j,2, ..., Ξ̃j,10]
′ denote the smoothed impulse response

10× 1 vector, our main interest and objective can be described as lying in simulating Θ̃j from its

posterior probability distribution P(Θ̃j | data).

Inherently, the issue of jagged responses in local projection estimations arises for the non-

impact, rolling horizons and it usually exacerbates as the rolling horizon gets longer owing to the

increased estimation variance from the overlapping nature of rolling regressions such as Equation

(B.4). However, impact response estimation does not suffer from this issue given that it corre-

sponds to a standard, non-overlapping regression specification. Hence, it is important to use a

smoothing procedure that maintains the raw impact response while smoothing the subsequent

horizon responses.11 Toward this end, we formulate state space Model (B.17)-(B.18) in a time-

varying manner such that for h = 1 στ = 0 σγ while for h = 2, ..., 10 we leave στ σγ as unrestricted

parameters. The time-varying nature of this formulation is manifested through the varying nature

of the model’s parameters of interest and the Kalman filter estimation procedure accounts for this

thereby resulting in an estimated impulse response vector where its first element equals the raw

impact estimated response and the subsequent elements are smoothed estimated responses.12

Treatment of Hyperparamters στ and σγ. To simulate posterior draws of Θ̃j, we need to sim-

ulate posterior draws from the joint posterior probability distribution of Θj, στ, and σγ, P(Θj, στ, σγ |
11Any otherwise developed smoothing procedure would potentially generate a smoothed impact effect

that can meaningfully deviate from the raw one.
12Note that the Bayesian raw impact estimated response would only equal its baseline, classical counter-

part from the text in population. In finite samples some deviation between them is to be expected.
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data), and then use the Kalman filter smoother to obtain posterior draws of Θ̃j. Bayes’ law dictates

that P(Θj, στ, σγ | data) = P(στ, σγ | Θj, data)P(Θj | data) and that P(στ, σγ | Θj, data) ∝ P(Θj |

στ, σγ, data)P(στ, σγ | data).

Since we have knowledge of P(Θj | data) from the previous section’s estimation, all we need in

order simulate posterior draws from P(Θj, στ, σγ | data) is to know P(στ, σγ | Θj, data). Following

the approach of Giannone et al. (2015) and Miranda-Agrippino and Ricco (2021), we treat στ and

σγ as additional model parameters for which we specify a bivariate uniform prior probability

distribution and estimate them via the Kalman filter as the maximizers of the posterior likelihood

P(στ, σγ | Θj, data), in the spirit of hierarchical modeling. Our assumed flat prior for the joint prior

distribution of στ and σγ (conditional on the observed data), P(στ, σγ | data), implies equivalency

between maximizing P(Θj | στ, σγ, data) and P(στ, σγ | Θj, data) (with respect to στ and σγ).

Estimation of P(Θ̃j | data). We are now in position to describe the estimation of the posterior

distribution of the smoothed IRF Θ̃j. As noted on Page 16, this posterior distribution can be

obtained from P(Θj, στ, σγ | data) by using the Kalman filter smoother to produce Θ̃j from the

posterior draws of Θj, στ, and σγ.

In particular, for each posterior draw of Ξj,h, we perform an unconstrained Kalman filter es-

timation of Model (B.17)-(B.18) which provides us with estimates of στ and σγ that we denote by

στ,MLE and σγ,MLE, respectively. This Kalman filter estimation provides us with estimates of στ and

σγ which we then feed into the Kalman filter smoother to produce a smoothed IRF. Applying this

smoothing procedure to the 1000 posterior draws of raw IRFs results in the sought after posterior

distribution of smoothed IRFs.

FEV Estimation Method. For the forecast error variance (FEV) decomposition estimation,

we utilize the estimated (smoothed) LOA-dependent impulse responses to compute the LOA-

dependent FEV contributions of our swap demand shock as follows:

CLOA,h =

(
Ξ̂L,0 + 2Ξ̂I,0

)2
+ ... +

(
Ξ̂L,h + 2Ξ̂I,h

)2

V(bt+h − bt−1 | LOA)
, (B.19)

CNLOA,h =

(
Ξ̂L,0 − 1.4Ξ̂I,0

)2
+ ... +

(
Ξ̂L,h − 1.4Ξ̂I,h

)2

V(bt+h − bt−1 | NLOA)
, (B.20)
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where Ξ̂L,h and Ξ̂I,h are the estimated linear and nonlinear (interaction-term) impulse response

coefficients from Equation (B.4); LOA and NLOA correspond to the LOA and no LOA states,

respectively; and V(bt+h − bt−1 | LOA) and V(bt+h − bt−1 | NLOA) represent the variances of IIs’

cross-currency basis’ accumulated differences conditional on the LOA and no LOA states.

Operationally, we define the LOA state for the FEV estimation as the group of observations

where the LOA series values are above or equal to the LOA series’s 92.8th percentile. The ratio-

nale for this definition is based on the fact that the LOA state for the impulse response estimation

is defined by the LOA variable being equal to its 96.4th percentile value. (The LOA variable’s 2

standard deviation value corresponds to its 96.4th percentile.) Hence, we define the variance con-

ditional on this state as the variance that results from considering observations that closely and

symmetrically surround the impulse response estimation’s LOA state value but at the same time

delivers a sufficient number of observations for FEV estimation. The no LOA state is symmetri-

cally defined for the FEV estimation as the group of observations where the LOA series values are

below or equal to the LOA series’s 7.2th percentile.

Results. Figures B.1 and B.2 present LOA-dependent impulse responses and FEVs of IIs’ basis

with respect to an aggregate FX swap demand shock (as measured by our GIV shock). We scale all

of the impulse responses in our empirical analysis such that the impact linear response of the IIs’

aggregate FX swap flow variable is equal to one standard deviation of this variable (542.5 millions

dollars).

The results indicate a short-lived basis response, with the basis widening significantly for only

3 trading days. And the contribution of the GIV shock to the variation of the basis is low on

impact, standing at 3.3%, and peaks at a slightly higher share of 5.8% after 7 days. We do not view

these low shares as evidence going against our paper’s message given that our claim is not that

the LOA-dependent FX swap demand channel explains the bulk of the variation in the basis but

rather that our data allows us to meaningfully uncover the presence of this channel in the data.

What can explain the temporary basis response from Figure B.1? To properly answer this ques-

tion, the basis response must be viewed together with the swap flow LOA-dependent response.

Toward this end, the LOA-dependent response of IIs’ aggregate open FX swap position is shown
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in Figure B.3. This response is obtained by replacing the dependent variable bt+h−1 − bt−1 from

Equation (B.4) with SPt+h−1− SPt−1 (IIs’ aggregate open FX swap position) and also adding a time

trend to the RHS of this equation.

The persistence of IIs’ open swap position’s response in the LOA state is quite low, with the

swap position dropping to 72.5 millions dollars at the 4th horizon from an impact value of 188.5

million dollars. And the response is no longer significant at the 7th and 8th horizons, regains

significance at the 9th horizon, and then returns to being insignificant. The low persistence of the

position’s response provides further support for the interpretation of IIs’ buying of swap-linked

dollars as a temporary action which essentially takes place entirely on impact, after which the

associated open position is rather quickly eliminated. And this interpretation is consistent with

the largely expedited closing of the basis from Figure B.1, i.e., the low persistence of the GIV shock

in the LOA state can serve as one sensible explanation for the rather temporary basis widening in

this state.13

13Note that the swap position response in the no LOA (linear) state does not posses this low persistence,
remaining very significant for all considered horizons. The apparent differential persistence of the GIV
shock in the two states speaks to the importance of focusing on the impact effects of the GIV shock for the
identification of the LOA-dependent FX swap demand channel, as we do in the paper, as in the impact
period the demand shock faces a differentially sloped FX swap curve while in later periods factors such as
differential persistence (as well as supply slope variation coming from arbitragers looking to seize arbitrage
opportunities present in the LOA state) come into play and sully the identification of the channel.
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Figure B.1: LOA-Dependent Impulse Responses of IIs’ Aggregate Cross-Currency Ba-
sis to an Aggregate FX Swap Demand Shock.
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IIs' Basis: Response Difference

Notes: This figure presents the LOA-dependent impulse responses of IIs’ aggregate cross
currency basis to the aggregate FX swap demand shock from the model described by
Equations (B.1)-(B.4). Solid lines represent median values of posterior distribution of im-
pulse responses and dashed lines depict the 95% bands of this distribution. The first and
second columns show the responses in the LOA and no LOA states, respectively; and the
third column shows the response differences across these two states. Responses are in
terms of deviations from pre-shock values (basis point deviations). Horizon (on x-axis) is
in days.
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Figure B.2: LOA-Dependent FEV Shares of IIs’ Aggregate Cross-Currency Basis At-
tributable to the Aggregate FX Swap Demand Shock.
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Notes: This figure presents the FEV share of IIs’ aggregate cross-currency basis that is
attributable to the aggregate FX swap demand shock from the model described by Equa-
tions (B.1)-(B.4). Solid lines represent median values of posterior distribution of FEVs
and dashed lines depict the 95% bands of this distribution. The first and second columns
show the FEV contributions in the LOA and no LOA states, respectively; and the third
column shows the FEV contribution differences across these two states. Horizon (on the
x-axis) is in days and the FEV share is on the y-axis.
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Figure B.3: LOA-Dependent Impulse Responses of IIs’ Aggregate Open FX Swap Posi-
tion to an Aggregate FX Swap Demand Shock.
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IIs' Open FX Swap Position: Response Difference

Notes: This figure presents the LOA-dependent impulse responses of IIs’ aggregate open
swap position to the aggregate FX swap demand shock from the model described by
Equations (B.1)-(B.4) where the outcome variable in the latter equation (accumulated dif-
ference in IIs’ basis) is now replaced by the accumulated difference in IIs’ open FX swap
position (i.e., SPt+h−1 − SPt−1) and a time trend is also added to the RHS of this equa-
tion. Solid lines represent median values of posterior distribution of impulse responses
and dashed lines depict the 95% bands of this distribution. The first and second columns
show the responses in the LOA and no LOA states, respectively; and the third column
shows the response differences across these two cases. Responses are in terms of devia-
tions from pre-shock values (in millions of dollars terms). Horizon (on x-axis) is in days.
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Appendix C Coefficient Estimates Results

This appendix presents the estimates of the linear coefficient (ΞL), interaction coefficient (ΞI), and

coefficient on interacting variable LOAt−1 (β) from estimation of Equations (8) and (7) from the

text (Table C.1); from estimation of Equation (8) from the text where the basis variable in this

equation is replaced with each sector’s swap flow variable and a time trend is added to the RHS

of these equations (Table C.2); from estimation of Equation (8) from the text for various alternative

specifications (Table C.3 - see notes for this table for details about these specifications); and from

estimation of Equations (9) and (10) from the text (Table C.4).
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Table C.1: Granular-With-Controls Estimation Results: Coefficient Estimates.

IIs’ Aggregate Basis (in Basis Points)

Coefficient GIV-With-Controls Bartik-With-Controls

Linear Coefficient -3.7*** -2.8***
(1.3) (0.7)

Interaction Coefficient -4.2** -2.4**
(1.8) (1.0)

LOAt−1 Coefficient -0.2 -0.1
(0.2) (0.2)

R2 1.8% 1.2%
Obs 2,648 2,648

IIs’ Aggregate Swap Flows (in Millions of Dollars)

Coefficient GIV-With-Controls Bartik-With-Controls

Linear Coefficient 542.5*** 542.5***
(21.3) (12.2)

Interaction Coefficient -101.6*** -119.3***
(23.1) (14.5)

LOAt−1 Coefficient 6.0 2.4
(4.5) (5.8)

R2 37.3% 55.9%
Obs 2,648 2,648

Notes: The first panel of this table presents the estimates of the linear coefficient (ΞL), inter-
action coefficient (ΞI), and coefficient on interacting variable LOAt−1 (β) from estimation
of Equations (8) and (7) from the text, respectively, where the two shocks are the difference
between the size-weighted- and equal-weighted-average (GIV) and the equal-weighted-
average (Bartik) of the idiosyncratic II-level demand shocks estimated from Equations
(4)-(6) from the text. The second panel of the table shows the corresponding estimates
obtained by replacing the basis variable in Equations (8) and (7) from the text with IIs’
aggregate swap flows one and adding a time trend to the RHS of these equations. As in
all of this paper’s estimations, the linear and interaction coefficients’ estimates are scaled
such that the linear demand effect on the IIs’ aggregate swap flows variable is equal to
one standard deviation of this variable (542.5 million dollars). Numbers in parenthe-
ses represent standard errors computed from the heteroskedasticity- and autocorrelation-
consistent procedure of Newey and West (1987) with the truncation lag selected from the
data-driven procedure from Andrews (1991). *, **, and *** represent significance levels at
the 10%, 5%, and 1% levels.
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Table C.2: GIV-With-Controls Estimation Results: Sectoral Swap Flows: Coefficient
Estimates.

Coefficient IIs Local Banks Foreigners MFs and ETFs HFs Real

Linear Coefficient 542.5*** -398.5*** -97.8*** -4.6 -12.7 10.1
(21.3) (40.9) (24.8) (5.4) (26.4) (9.3)

Interaction Coefficient -101.6*** 152.6*** -41.5 -1.9 -27.3 5.9
(23.1) (41.1) (35.7) (4.1) (19.5) (6.1)

LOAt−1 Coefficient 6.0 -8.4 1.5 -1.0 -4.9 -0.3
(4.5) (11.9) (11.1) (1.3) (3.2) (1.3)

R2 37.3% 4.9% 0.8% 0.1% 0.1% 0.1%
Obs 2,648 2,648 2,648 2,648 2,648 2,648

Notes: This table presents the estimates of the linear coefficient (ΞL), interaction coefficient
(ΞI), and coefficient on interacting variable LOAt−1 (β) from estimation of Equation (8)
where the basis variable in this equation is replaced with each sector’s swap flow variable
and a time trend is added to the RHS of these equations. The two shocks are the difference
between the size-weighted- and equal-weighted-average (GIV) and the equal-weighted-
average (Bartik) of the idiosyncratic II-level demand shocks estimated from Equations
(4)-(6) from the text. For completeness, IIs’ swap flows’ responses are presented in the
first column of the table, followed by the corresponding responses for local banks (sec-
ond column); foreigners (third column); mutual funds (MFs) and exchange trade funds
(ETFs) (abbreviated by MFs in the fourth column); hedge funds and proprietary trad-
ing firms (abbreviated by HFs in the fifth column); and the real sector (seventh column).
Numbers in parentheses represent standard errors computed from the heteroskedasticity-
and autocorrelation-consistent procedure of Newey and West (1987) with the truncation
lag selected from the data-driven procedure from Andrews (1991). *, **, and *** represent
significance levels at the 10%, 5%, and 1% levels.

25



Table C.3: GIV-With-Controls Estimation Results: Robustness Checks: Coefficient Es-
timates.

IIs’ Aggregate Basis (in Basis Points)
Coefficient Alternative LOA Post-GFC Pre-COVID Shorter Lags Longer Lags
Linear Coefficient -3.4*** -2.6*** -3.3*** -3.4** -3.8***

(1.2) (0.8) (0.8) (1.3) (1.3)
Interaction Coefficient -3.3*** -3.3*** -2.7** -3.7** -4.0**

(1.2) (1.2) (1.3) (1.8) (1.7)
LOAt−1 Coefficient -0.2 0.0 -0.2 -0.2 -0.2

(0.2) (0.2) (0.2) (0.2) (0.2)
R2 1.3% 1.4% 0.9% 1.7% 1.7%
Obs 2,648 2,392 2,204 2,652 2,640

IIs’ Aggregate Swap Flows (in Millions of Dollars)
Coefficient Alternative LOA Post-GFC Pre-COVID Shorter Lags Longer Lags
Linear Coefficient 542.5*** 542.5*** 542.5*** 542.5*** 542.5***

(14.7) (19.4) (22.0) (20.9) (20.3)
Interaction Coefficient -124.0*** -94.8*** -123.2*** -104.0*** -99.6***

(18.6) (20.5) (23.9) (24.2) (22.4)
LOAt−1 Coefficient 5.5 6.2 -3.4 6.4 6.6

(8.0) (5.1) (4.2) (4.0) (5.7)
R2 39.2% 34.8% 33.9% 42.2% 35.2%
Obs 2,648 2,392 2,204 2,652 2,640

Notes: The first panel of this table presents the estimates of the linear coefficient (ΞL),
interaction coefficient (ΞI), and coefficient on interacting variable LOAt−1 (β) from esti-
mation of Equation (8) from the text for various alternative specifications. The first uses
an alternative LOA measure taken from He et al. (2017); the second excludes the GFC pe-
riod by beginning the sample in 2010; the third excludes the COVID period by truncating
the sample at the end of February of 2020; and the fourth and fifth halve and double the
number of lags from Equation (3) from the text, respectively. The second panel of the ta-
ble shows the corresponding responses of IIs’ aggregate swap flows obtained by replacing
the basis variable in Equation (8) from the text with the swap flow one and adding a time
trend to the RHS of these equations. As in all of this paper’s estimations, the linear and
interaction coefficients’ estimates are scaled such that the linear demand effect on the IIs’
aggregate swap flows variable is equal to one standard deviation of this variable (542.5
million dollars). Numbers in parentheses represent standard errors computed from the
heteroskedasticity- and autocorrelation-consistent procedure of Newey and West (1987)
with the truncation lag selected from the data-driven procedure from Andrews (1991). *,
**, and *** represent significance levels at the 10%, 5%, and 1% levels.
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Table C.4: Seasonal Demand Shifter Results: Coefficient Estimates.

IIs’ Aggregate Basis (in Basis Points)
Coefficient Seasonal-No-Controls Seasonal-With-Controls
Linear Coefficient 4.4 4.6

(2.9) (3.3)
Interaction Coefficient 8.6** 7.9**

(3.7) (3.7)
LOAt−1 Coefficient 0.3 -5.1

(0.2) (3.4)
R2 0.2% 37.9%
Obs 2,650 2,650

IIs’ Aggregate Swap Flows (in Millions of Dollars)
Coefficient Seasonal-No-Controls Seasonal-With-Controls
Linear Coefficient 542.5*** 542.5***

(93.5) (124.9)
Interaction Coefficient -224.1*** -150.6*

(78.4) (76.9)
LOAt−1 Coefficient -2.6 55.6

(11.6) (59.3)
R2 1.7% 37.8%
Obs 2,650 2,650

Notes: The first panel of this table presents the estimates of the linear coefficient (ΞL),
interaction coefficient (ΞI), and coefficient on interacting variable LOAt−1 (β) from esti-
mation of Equations (9) and (10) from the text, respectively. The second panel of the table
shows the corresponding estimates obtained by replacing the basis variable in Equations
(9) and (10) from the text with IIs’ aggregate swap flows one and adding a time trend
to the RHS of these equations. As in all of this paper’s estimations, the linear and in-
teraction coefficients’ estimates are scaled such that the linear demand effect on the IIs’
aggregate swap flows variable is equal to one standard deviation of this variable (542.5
million dollars). Numbers in parentheses represent standard errors computed from the
heteroskedasticity- and autocorrelation-consistent procedure of Newey and West (1987)
with the truncation lag selected from the data-driven procedure from Andrews (1991). *,
**, and *** represent significance levels at the 10%, 5%, and 1% levels.
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